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Abstract—This paper deals with the effective constitutive behavior of ductile metals reinforced by
aligned spheroidal inclusions with linear-elastic properties. For simplicity, both the matrix and the
inclusions are assumed to be incompressible and isotropic, so that the overall constitutive behavior
of the metal-matrix composites is incompressible and transversely isotropic. Based on a recently
proposed variational method for estimating the effective behavior of nonlinear composites, results
are obtained for the initial yield surfaces and overall stress-strain relations in terms of the three
essentially distinct loading modes for this class of composites : Axisymmetric tension (relative to
the symmetry axis of the inclusions), longitudinal shear (along the symmetry axis) and transverse
shear (perpendicular to the symmetry axis). It is found that particle shape has a significant effect
on the effective response of the composites, and that this effect is markedly different for the three
loading modes. For the axisymmetric mode, oblate and prolate shapes have the largest strengthening
effects; for the transverse mode, oblate shapes are most effective; and for the longitudinal mode,
nearly spherical shapes are best. Particle stiffness also has a strong effect on the initial yielding
behavior of the composites, which is magnified for the more severe aspect ratios. On the other hand,
the stiffness of the particles does not seem to significantly affect the stress-strain behavior of the
composites for strains greater than about five times the yield value.

1. INTRODUCTION

Because of potential applications to a number of technologically important problems, there
has been over the past few years great interest in the problem of estimating the effective
constitutive behavior of metal-matrix composites reinforced by stiff brittle particles.
However, consideration of this fundamental problem dates back to the pioneering work of
Drucker (1965, 1966), who estimated the effect of rigid particles on the effective yield
strength of particle-reinforced composites with a perfectly plastic matrix. More recently,
Duva (1984) made use of the numerical solution to a kernel problem for a rigid spherical
particle in an infinite matrix of a power-law material, together with a differential self-
consistent scheme, to estimate the effective behavior of the corresponding particle-reinforced
composites. Similar analyses for power-law materials reinforced by aligned rigid spheroidal
inclusions have been carried out by He (1990) and Lee and Mear (1991a, b), under axisym-
metric loading conditions (relative to the symmetry axis of the inclusion). An alternative
approach to the problem is to assume periodic microstructures, and to estimate the effective
behavior in terms of solutions to boundary value problems, defined over unit cells of the
microstructures, with periodic boundary conditions. This approach was taken by Christman
et al. (1989), Tvergaard (1990) and Bao et al. (1991) for both spheroidal and cylindrical
particles, under the simplifying assumptions of cylindrical unit cells and axisymmetric
loading conditions (to achieve numerical simplicity). The first of these references also
includes experimental results for a model SiC whisker-reinforced aluminum alloy. In
addition, full three-dimensional finite element analyses were carried out by Hom (1992) for
composites with cubic symmetry subjected to tension along and transverse to the alignment
axis. It was found that all the above periodic calculations are in reasonably good agreement
with each other, but they tend to overestimate the load-carrying capacity of the model
experiments. We also note that Accorsi and Nemat-Nasser (1986) and Teply and Dvorak
(1988) have developed methods for bounding the incremental stiffness tensors of periodic
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composites, which may be used iteratively to obtain estimates for their overall stress—strain
relations.

In this paper, we make use of an altogether different approach that, while lacking the
accuracy and some of the features of the above mentioned analyses, possesses some distinct
advantages of its own, including simplicity of application to general nonlinear behavior and
loading conditions. This approach is based on a variational statement recently developed
by Ponte Castafieda (1991a, 1992), which serves to determine the effective behavior of a
given nonlinear composite in terms of the effective behavior of a certain class of linear
comparison composites. This allows the application of the variational procedure to generate
bounds and estimates for the effective behavior of classes of nonlinear composites in terms
of bounds and estimates for corresponding classes of linear composites. Although many
different types of bounds and estimates are possible on account of the existing wealth of
results for linear-elastic composites, thus far the method has been applied mostly to obtain
bounds and estimates of the Hashin—Shtrikman (1962, 1963) type. In this connection, it is
important to point out that there is an older, different method, proposed by Talbot and
Willis (1985), that also leads to bounds of the Hashin—Shtrikman (HS) type for nonlinear
composites [see, for example, Willis (1991)]. Under certain technical assumptions that will
be met in this paper, it can be shown that both methods yield the same HS lower bounds
for the strain potential functions of nonlinear composites with isotropic phases. However,
these bounds turn out to be of little practical value in the present work because they can
be shown to correspond to ‘““particulate’ microstructures with the stiffer material playing
the role of the matrix phase. Instead, estimates for the corresponding upper bounds will be
used (which have not been obtained directly from the Talbot—Willis method). As discussed
by Ponte Castafieda (1991b, 1992), these “upper estimates’ for the strain potentials may be
interpreted as estimates for the effective response of two-phase composites with particulate
microstructures, such that the weaker phase plays the role of the matrix (as is the case for
the metal-matrix composites of interest in this work). Finally, we note that a third approach,
that is useful for very special classes of composites (essentially pure-power materials), was
proposed recently by Suquet (1992a, b, 1993). However, it can be shown that this approach
is entirely equivalent to the approach of Ponte Castafieda (PC), specialized to pure-power
composites.

Application of these variational methods to obtain explicit estimates for the effective
behavior of metal-matrix composites reinforced by rigid and elastic spherical inclusions
were given respectively by Ponte Castafieda and Willis (1988) (self-consistent estimates
using the Talbot—Willis method) and by Ponte Castafieda (1991a,b) (self-consistent and
HS estimates using the PC method). Extensions of these results for composites reinforced
by rigid spheroidal inclusions (using the PC method) were given by Talbot and Willis (1992)
and by Li et al. (1993) [see also results of Suquet (1992a) for power-law materials]. The
present paper generalizes these studies further by considering the effect of particle stiffness,
in addition to the effects of particle concentration and shape. One difference in the approach
of this paper from that followed for the corresponding periodic calculations discussed
previously is that the arrangement of the particles within the composite cannot be controlled.
This is because we will make use of the HS bounds of Willis (1977) for linear composites
with “overall ellipsoidal symmetry” in the context of the PC variational procedure. In
particular, this means that the results of this paper will not only apply to composites with
aligned spheroidal inclusions, but more generally to any composite with equivalent overall
symmetry [see Willis (1981)]. We conclude this section by noting that different estimates
have also been obtained by Zhao and Weng (1990) for metal-matrix composites reinforced
by aligned spheroidal inclusions; these are based on a framework developed earlier by
Tandon and Weng (1988), which in turn consisted of an appropriate adaptation of the
mean-field method of Mori and Tanaka (1973).

2. VARIATIONAL CHARACTERIZATION OF EFFECTIVE PROPERTIES

We consider a general specimen of a nonlinear heterogeneous material occupying a
domain Q (of unit volume) with boundary dQ. The material is characterized by a stress
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potential U(x, 6), depending on position x and on the stress g, and such that the strain & is
given by

9 = TH D, M

Such a model provides an adequate characterization of the time-independent nonlinear
constitutive behavior of ductile materials subjected to approximately proportional, quasi-
static loading conditions [in the so-called context of deformation theory of plasticity ; see
Budiansky (1959)]. Alternatively, letting & denote the strain-rate in the material, the above
model is often used to characterize the high-temperature creeping behavior of metals.

Defining [see Hill (1963)] the effective potential function of the heterogeneous material
by

U@6) = minJ U(x,6) do, Q)
Q

aes(d)
where
S@)={6|V'e=0inQ, and on=dn, xe0Q} ?3)
represents the set of statically admissible stress fields satisfying a uniform traction boundary

condition, the effective constitutive relation for the heterogeneous material may then be
given in terms of the relation

%G @)

where £ and ¢ are the mean values of the strain and stress fields over Q.

While the effective behavior of the composite is fully described by I in terms of relation
(4), the determination of I from (2) and (3) presents real difficulties in that it requires the
solution of a nonlinear boundary value problem with complex structure. Ponte Castafieda
(1991a, 1992) introduced a variational principle that can be used to estimate the effective
potential functions of nonlinear composites in terms of optimization problems involving
the effective potential functions of appropriate classes of linear comparison composites.
Thus, results for the effective properties of linear composites may be used to generate
corresponding estimates for the effective properties of nonlinear composites. In this paper,
we make use of the Hashin—Shtrikman bounds of Willis (1977, 1981) for linear composites
with aligned spheroidal inclusions (or, more generally, with “ellipsoidal” two-point cor-
relation functions) to estimate the effective constitutive behavior of ductile-matrix materials
reinforced by aligned spheroidal inclusions with linear-elastic properties. The PC variational
principle is briefly reviewed in the following.

For simplicity, we consider only composites with incompressible, isotropic phases.
Thus, the potential function for the nonlinear heterogeneous material may be written in the
form U(x,6) = ¢(x,1.), where 1. = . /46’ - @’ is the effective shear stress, and 6’ = 6 —0,,]
is the deviatoric stress tensor. (Note that the potential function ¢ is independent of the
hydrostatic stress o, = tr 6/3.) Then, under certain technical hypotheses [see Ponte
Castafieda (1992)] satisfied in this paper, we may express the material potential function in
terms of the optimization problem

U(X, 6) = }}:g‘% {UO(xa 6) - V(x’ ﬂO)}’ (5)

where U, is the potential function of an incompressible, isotropic linear-elastic comparison
material with variable shear modulus u,(x), such that Uy(x, 6) = 1/(2ue(x))tZ, and where
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V(x, to) = max {U,(x,6) — U(x,6)}. 6)

The variational principle follows by averaging the local relation (5) to give [see Ponte
Castafieda (1992) for details]

U(6) = max {ﬁo(ﬁ)—LV(x,uo(x))dv}, ()

Ho(x) 2 0

where

U,(6) = min f Uy(x,6)dv
Q

o€ S(d)

is the effective potential of the linear comparison composite.

Relation (7) is an exact expression for the effective potential function of a given
nonlinear composite, but it involves an infinite-dimensional optimization problem over the
set of non-negative functions uy(x), and is therefore difficult to implement, except for
some special types of microstructures [e.g. laminated composites ; see deBotton and Ponte
Castafieda (1992)]. However, it may be shown that (7) can be used in an approximate
fashion to generate bounds for the effective properties of classes of nonlinear composites
with more general microstructures. This will be done here in the context of two-phase
composites.

The phases are assumed to be incompressible, isotropic and homogeneous, char-
acterized by convex potential functions U (6) = ¢*'(z,), with r = 1 and 2 corresponding to
phases 1 and 2, respectively. Perfect bonding between phases is assumed, so that the effect
of imperfections, in the form of micro-cracks and voids at the interfaces, is neglected.
Further, the volume fractions of the phases, denoted by ¢ (¢ +¢(® = 1), are also assumed
to be known. Even then, the effective potential function given by (7) requires the solution
of an infinite-dimensional optimization problem over the set of functions u4(x). However,
by restricting our attention to the class of piecewise constant uy(x) (constant in each phase
of the nonlinear material), we arrive at the following lower bound approximation for the
effective potential function of the nonlinear composite, namely,

0@) > max (J,6)- T cCOVOuP)), @®

() (D
w50

where p§" and u{? are the values of ,(x) in phases 1 and 2, respectively. Also, {7,(6) now
corresponds to the effective potential function of a linear comparison composite with
precisely the same microstructure as the nonlinear composite, and

1
VO (@) = max {W13—¢"’(re)}- ©)
For later reference, we note that [cf. eqn (6)]
1
() = max {m LA A (u%”)}- (10)

The optimization problem implied by (8) is two-dimensional, and therefore simpler to solve
than that implied by (7), provided that we have estimates for the effective potential of the
relevant two-phase, linear comparison composite. In addition, if we have a lower bound
for the effective potential [, of a given class of linear comparison composites, then (8)
generates a lower bound for the effective potential I of the corresponding class of nonlinear
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composites. If, on the other hand, we have an upper bound for U,, then (8) will not
necessarily generate an upper bound for ¥ ; instead, it will generate only an estimate for U.
Such an estimate will be referred to in this paper as an “‘upper estimate” to distinguish it
from the lower bound.

As mentioned previously, in this paper, we will make use of Hashin—Shtrikman upper
bounds for the strain potential I, of the linear comparison composites to generate cor-
responding upper estimates for the nonlinear metal-matrix composites. There are good
reasons for this approach. First, it has been shown by Francfort and Murat (1986) that the
Hashin-Shtrikman (1963) bounds for linear composites with isotropic overall symmetry
are attainable by special types of “particulate” microstructures with clearly defined matrix
and inclusion phases. Thus, the upper (lower) bound for U, is attained by microstructures
with the stiffer material occupying the inclusion (matrix) phase and the more compliant
material in the matrix (inclusion) phase. Analogous results have been shown by Lipton
(1991) for the HS bounds of Hill (1964) and Hashin (1965) for fiber-reinforced composites
with transversely isotropic overall symmetry, and it is likely that similar resuits could be
proved for the bounds of Willis (1977) for composites with “ellipsoidal” overall symmetries.
Therefore, it makes sense to regard the bounds of Willis as reasonable estimates for
composites with particulate microstructures, where the inclusion shape is ellipsoidal. In
fact, Willis (1980, 1981) has shown that the expressions for the bounds of Willis (1977)
for composites with ellipsoidal symmetry actually constitute variational estimates for the
effective moduli of composites containing aligned ellipsoids. In our problem, we are inter-
ested in metal-matrix composites reinforced by aligned spheroidal inclusions with linear
properties. It is then consistent with the previous remarks for linear composites, to regard
the nonlinear estimates for {J, obtained via (8), from the HS upper bounds of Willis for
U,, as sensible estimates for the effective behavior of metal-matrix composites consisting
of a relatively compliant matrix phase, reinforced by stiffer linear-elastic inclusions. The
second reason for using the bounds of Willis (1977) is that their analytic expressions are
considerably simpler than the corresponding expressions for other types of estimates, such
as self-consistent (Budiansky, 1965; Hill, 1965) and generalized self-consistent estimates
(Christensen and Lo, 1979). This leads to significant simplification in the context of making
use of the variational statement (8).

3. NONLINEAR INCOMPRESSIBLE COMPOSITES REINFORCED WITH ALIGNED SPHEROIDAL
INCLUSIONS

In this section, we consider the application of the above procedure to the class of two-
phase composites with nonlinear, incompressible matrices reinforced by aligned, nonlinear,
incompressible spheroidal inclusions. In the next section, we will consider the specialization
of these results to metal-matrix composites reinforced by linear-elastic inclusions. The
aspect ratio of the inclusions is given by a = b/a, where a and b are defined in Fig. 1, so
that @ < 1 and « > 1 correspond to oblate and prolate inclusions, respectively. We let
materials 1 and 2 correspond to the matrix and inclusion phases, so that UV (6) = ¢'"(z.),
U%(g) = ¢'?(r,) and ¢V, c? denote the stress potentials and volume fractions of the
matrix and inclusion phases, respectively. We note that, while each phase of the composite
is isotropic, the geometrical arrangement of the inclusions results in overall transversely
isotropic symmetry for the composite. In the following subsection, we recall the results of
Willis (1977) for the linear-elastic comparison composites, which will be used in later
sections to obtain estimates for the effective potential and stress—strain relations of the
nonlinear composites just described.

3.1. Linear comparison composites

The geometry of the linear-elastic composites considered in this subsection is precisely
the same as that described above for the nonlinear composites. However, since the properties
of the phases are linear, their behavior may be described in terms of fourth-order compliance
tensors M (r = 1 and 2, corresponding respectively to the matrix and inclusion phases).
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Fig. 1. (a) Composite materials reinforced by aligned spheroidal inclusions. (b) Geometry of prolate
and oblate spheroids.

Because the phases are isotropic, these tensors depend only on two parameters each: The
shear moduli 4§’ and the bulk moduli k§’ of the two phases (r = 1, 2).

It then follows from the work of Willis (1977) [see also Walpole (1966, 1969), Willis
(1980, 1981) and Weng (1992)] for linear composites with overall ellipsoidal symmetry, or
analogously for linear composites reinforced by aligned ellipsoidal inclusions, that an
estimate for the effective compliance tensor M of the class of two-phase linear composites
of interest here may be expressed in the form

2 2 -1
MO = Z c(’)M(’)B(r){ Z C(")B(')} , )
r=1 = ]

where the BY) (r=1,2) are the stress concentration tensors (Hill, 1965) of the two phases
(associated with ellipsoidal inclusions embedded in infinite matrices), given by

B® = [J+ (M) "(I—SO)YM® — M)~ (12)

In this last relation, MY denotes the compliance tensor of a homogeneous comparison
material, 7 is the fourth-order identity tensor, and S® denotes the Eshelby (1957) tensor
associated with an ellipsoidal inclusion embedded in a matrix with compliance tensor M9,
For the special case of a spheroidal inclusion embedded in an isotropic matrix, S@ is
transversely isotropic and may be expressed, in the notation of Walpole (1969), as
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SO = (S0, + 893, S%11, 2853, 25912, %22, SB11), (13)

where the nonzero components of S are given explicitly in Appendix A. In these
expressions, x, denotes the direction of inclusion alignment (a symmetry axis), and x,, X;
are perpendicular to x, (see Fig. 1).

To obtain the required upper bound for the effective compliance M (a lower bound
for the stiffness) of the relevant class of linear composites, the compliance of the comparison
material M@ in (11) must be set equal to that of the less stiff phase MV (in this case the
matrix phase). Then, after some algebra, (11) leads to an upper bound of the form

M(Jr) = MW +c(2)[(M(2)(M(1))71 _1)— 1 +C(1)(I—S“))]_ 'M“), (14)
where SV denotes the Eshelby tensor associated with phase 1. The resulting overall com-

pliance tensor can be shown to be transversely isotropic, and may be simplified further, if
the phases are incompressible (i.e. £§’ — 00), to take the form

~ 1 1 1 1 1 1
M(+) = ( Y N smN YA~ Y AN T A~ )’ 15
204 fia 2 20, 20, 2, (1)

where [, fI, and f, are given by

% =1—c? 1-¢

fa =P (1—8) f (%)’
" =1 1-¢

i, 1—cV(1—e)(1-28%y3(@)’

(D
Ho 1-¢

=1—c® 1

A ST —9(1-25T,@) (o

and correspond to the three independent shear moduli of the linear, incompressible, trans-
versely isotropic composites. In this last relation, e = u§"/u{? (< 1) denotes the ratio of the
shear modulus of matrix material to that of the inclusion, fis a function of the aspect ratio
a, which is given explicitly in Appendix A, and S%,; and S{4,, are the relevant components
of the Eshelby tensor, which, for an incompressible matrix, are also only functions of the
aspect ratio a.

We further note that the associated effective stress potential U4 is given by [see
Walpole (1969)]

~ 1 1 1
00@) = 5t 5 4 5 a7
P

where 74, 7, and 7, are the three transversely isotropic invariants of the applied stress tensor
&, corresponding to the three independent loading modes of an incompressible, transversely
isotropic material : Axisymmetric deviatoric stress (relative to the symmetry axis), transverse
shear stress (in the plane perpendicular to the symmetry axis) and longitudinal shear stress
(along the symmetry axis), respectively. In components, these stress invariants are given by

_ 1 _ _ _
Ty = —=[3(633+G22) — 611,

>

Tp = [633+ 4(633—622)°]"2,

T, = (612+61,5)"%, (18)

and can be shown to be related to the average equivalent shear stress 7, through
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T, = ([+T2+TH)Y2 (19)

Next, making use of the following identity introduced by deBotton and Ponte
Castafieda (1992),

&

2 —1 (1)
( Z c(r)u(r)> = min {i?l') [1 +C(2)Cl)]2 + '[7(2‘) [1 _C(I)w]2}’ (20)
r=1 @

we are able to derive the following expressions for the three effective moduli of (16), namely,

1 {Qé” Qé”}
— =min =5 + —5 (>
uo”  u?

Hq @
1 ) f)l) ;32)
& - %+ %)
-
where
inl)(w) = 14+c? Ff‘_”!l_f—(;c)(z)_w]f _,(C(Z))Z[] +c(l)w]2:l’
09 = 1+e3| STy e,
00t = 1+e| U oy ey | @
and

0 (@) = (¢)’[1+c V],
07 (B) = () [1+cP B,
0 () = ()’ [+ % (23)

As a consequence of these relations, the upper bound U, for the effective stress potential
in (17) may be expressed in the form

P+ (= . (F")? (#?)?
(+) = (1) (2)
Uy (6) I(Eléryl {c 240 +c 2 | (24)
where
o _ /O @)+ 0P B)E+ 0P ()i 2
Te = \/—Tlv) R ( 5)
c
o _ VP @+ eP B +oP ) 06

J

We note that (" and #{» may be thought of as estimates for the average equivalent shear
stresses in the matrix and inclusion phases, respectively. However, these estimates are not
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consistent, in general, with the estimates that may be obtained directly for the polarizations
in the context of the Hashin-Shtrikman variational principles.

3.2. Nonlinear composites

With expression (24) for U§" serving as an upper bound for the effective potentials
of the linear comparison composites, we may obtain a corresponding upper estimate U 7+
(not a rigorous bound) for the effective potentials of the nonlinear composites. This is
accomplished by substituting (24) into (8) to obtain

T 6) W@ oG )} ; Oy 8)} 27
é) = max i < VIO (-
O gl;lvl ¢ 2u” e 2uy? r§lc ) @

By g 30

By interchanging the order of the maxima and minima (as allowed by the Saddle Point
Theorem) above, and making use of relations (10), we arrive at the simple expression

(7(+)(6.) = m;n {C(I)¢(l)(f§l)) +c(2)d)(2) (féZ))}’ (28)
,fy

where ¢ and 7{?, which are functions of the applied mean stress , as well as of w, # and
y, are as given by (25) and (26), respectively. We further note that, in view of expression
(28), 7" and ¢ depend inot only on the inclusion volume fraction and aspect ratio, but
also on the constitutive properties of the matrix and inclusion phases (as characterized by
the functional forms of ¢V and ¢*?).

Given the upper estimate (28) for the effective potential of nonlinear composites with
aligned spheroidal inclusions of a stiffer material, we may compute the corresponding
effective stress—strain relations for the composites in the usual fashion. To do this efficiently,
it is useful to introduce the transversely isotropic invariants of the applied strain, cor-
responding to the stress invariants given in (19). They are the axisymmetric deviatoric strain
74, the transverse shear strain 7, and the longitudinal shear strain 7,. In components, they
are given by

2 . -
Fa = —[1Ess +82) —&11],

NG
o = 20833+ 4(E33 —E22) 1",
%o = 2E%+83) "7, 29)

and they are related to the average equivalent shear strain j, = ./’ &’ through

7o = Fa+T+T)"2 (30)

Then, the effective stress—strain relations for the particle-reinforced nonlinear com-
posites are given by expressions

a('](+) _ afj(+) _ 5(7(+)

Ya = 3%, Y» = afp s }’n=a—fn, 3n

which, making use of (28) {see deBotton and Ponte Castafieda (1992)], may be rewritten
in the form
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s <Q&" 09" 0of a¢<2>>_

Tq

=5 A=y T = Ao
£ otV T T2 0tP ) s — @b
(1) A ) A2
5 = (Qp 0¢" 0y 3¢ ’>T_
p =\ =D A:0 ~(2) A2
& atld T ot )" (w.ﬂ.w:(a‘),t?.-p)’
T = (QS‘” CAM L a¢(2>>f (32)
v =\ Sy 2 T R Ae
70 ot TP 1P ) e - @b

where 7{" and 7{? are given by (25) and (26), respectively, and where @, f§, ¥ are the
optimized values of w,f,y from (28), respectively. We emphasize that, in the above
expressions, the derivatives may be evaluated keeping w, f and v fixed.

In summary, expression (28) for the effective potential U'*?, and the corresponding
stress—strain relations (32), serve to characterize the effective constitutive behavior of the
class of two-phase nonlinear composites with aligned spheroidal inclusions (of a stiffer
material) in terms of a simple three-dimensional optimization problem in the three variables
w, B and y. The results apply for general inclusion volume fraction and aspect ratio, as
well as for general applied loading conditions and general nonlinear (incompressible and
isotropic) constitutive behavior for the matrix and inclusion phases. They generalize cor-
responding results for laminated composites (¢ = 0) and fiber-reinforced composites
(a = o0) by deBotton and Ponte Castaneda (1992, 1993), and for composites reinforced by
rigid particles by Talbot and Willis (1992) and Li et al. (1993).

4. APPLICATION TO METAL-MATRIX COMPOSITES

In this section, we specialize the results of the previous section for general nonlinear,
two-phase composites with spheroidal inclusions to metal-matrix composites reinforced by
stiff linear-elastic inclusions. Thus, we will take the potential of the matrix phase to cor-
respond to a linear/power-law material, and that of the inclusion phase to a linear-elastic
material. In practice, as in the model metal-matrix composites used by Christman et al.
(1988) (SiC whisker-reinforced aluminum alloys), both the matrix and the inclusion phases
will exhibit compressible behavior. However, in this work, we will neglect the effect of
compressibility ; our goal will not be to accurately model any specific material system, but
to explore in the simplest possible context the effects of particle shape and stiffness on
overall behavior. The methods of this paper can be extended to include compressible (and
even anisotropic) behavior for the constituent phases at the expense of complicating the
analysis. This will be pursued elsewhere.

With the above limitations in mind, we choose the following uniaxial stress—strain
relation [also used by Tvergaard (1990)] to characterize the behavior of the model matrix
phases, namely,

g

E(l)’
&=

)
9y
E®

for a<alV,

o /1

(1)

5 ) for 6>a,"’,
y

(33)

where E'" is Young’s modulus, ¢} is the uniaxial yield stress and # is the strain-hardening
exponent of the material. These relations can be generalized to multi-axial stress states via
the expressions

1

’ 1
5;‘(—1)'0' N fOI' Te < ‘L'§, ),
g = | o (34)
T\ 1)
2 (W) o, for 1.>1,7,
U y

where we have made use of the relation £V = 3u” (with u'" denoting the shear modulus



Metal-matrix composites 3199

of phase 1) for an incompressible material, and where t{¥ = o}" /\/3 denotes the yield stress
in shear of the matrix material.
The corresponding strain potential function may be obtained from

3
U (o) = f &(6)-do = ¢V (o), (33

so that

2 (12 2 . n+ 1 . 2 Qa
¢“)(I)—2T“>+(21u")) {n+1[(;§')> _1]_[<%)_1]}H(r°_1y)) ¢9

where H is the Heaviside step function. Note that the material becomes linear in the limit
as n — 1, and elastic/perfectly plastic in the limit as n — c0.

On the other hand, the constitutive behavior of the linear-elastic inclusions is char-
acterized by the quadratic potential

UP(0) = ¢2 (1) = #(z) ) (37

where p(? is the shear modulus of the inclusion material. For consistency with the assump-
tions of Section 3, we assume that @ > u'V.

The effective stress potential of the composite material is thus obtained by substituting
(36) and (37) into (28), which gives

(-(l))2 (T(l)) 2 T-él) n+ 1
U(+)(a)—m;n{c<l) 2D +C(1)2;“) = r§_‘) -1

7 . (&)’
_|:< (U) 1:|>H(r£l)—r§,l))+c(2) YR (38)
Ty U

where 7{" and 7? are given by (25) and (26), respectively. Also, denoting, by &, f,§ the
optimized values of w, f,y above, we obtain, from (32), the following expressions for the
effective stress—strain relations of the composite

74 B r—gl) n—1 ) ] -
71—>={ ”((w) —1H@E" -1") Q“’(w)+Q(2’(w) pe —“)
L )’ .

% '
771: [ f«(zl) ! 1 1 ] i (l) f

W= 1+ W -1 H(fé)—f§ )) Q( )(ﬁ)'*'Q(z)(E) (2) —(’"
y L Y - Y

(39)

fn [ ft(al) ! —(1 1 i 1 (l)
‘))§,—I)= 1+ (1) —1 H(Té)—'f§: )) l(l)(’);)+Q(2)(y) (2)}151 B

where (" is evaluated at = &, B = f and y = §, and where 9" = \/§£§') denotes the
yield strain in shear of the matrix phase (here &{" = o{"/E" is the matrix yield strain in
tension). These three expressions characterize the effective stress—strain relations for the
three deformation modes of the transversely isotropic, incompressible particle-reinforced
composite.

Because of the action of the Heaviside function H, in both expression (38) for the
effective potential and expressions (39) for the effective stress-strain relations, we may
interpret the function defined by



3200 G. L1 and P. PONTE CASTANEDA
(&) = 7L(d)/r" -1, (40)

with 7¢! evaluated at &, f and 7, as the effective yield function of the nonlinear composite.
This function is such that ®*)(¢) < 0 if the applied stress & is within the elastic region of
the composite, ®*)(6) = 0 at yield and ®*)(6) > 0 in the plastic range. Thus, this yield
condition for the composite has the following physical interpretation : The composite yields
when the “‘average equivalent shear stress” in the matrix phase 7{" reaches its yield value
7{". This is expected to be only an approximation, but one that is consistent with the
homogenization model used.

An alternative form for the yield function, valid only in the elastic range of the
composite, may be obtained from (40) by solving for the optimal values of w, 8,7 in the
linear range of the composite, and substituting these into 7" in (40). The result is

s 7, YV T, Y i, V
@) = \/ ((fy)d> +((fy)p> +<(fy)") L 4D

where (7,)4, (i), and (f,), denote the effective yield stresses in the pure axisymmetric,
transverse and longitudinal loading modes, respectively. They are given explicitly by

(&)a —\/C(”_l—c(z) 1= f ) (1 —pM/u?)? ]_1
‘c§1) - | (1= f@)(1=pP/u?))? >

(5o _ \/c"’—l—c‘z) 1= (1 =25 @) =) T
P | == ) (- 25Bs @)
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¥

(42)

We note that these expressions are independent of the material nonlinearity since they only
serve to characterize the initial yield stress of the composite. On the other hand, they are
dependent on the inclusion concentration ¢ and shape «, the stiffness ratio u”/u® and
the yield stress of the matrix material z{". We further note that the above results approach
the results of Li ez al. (1992), for rigidly reinforced composites, in the limit as u”/u® — 0.

5. RESULTS

In this section, we explore the effects of particle shape and stiffness on the effective
constitutive behavior of the model metal-matrix composites discussed in the previous
section. We will investigate, in particular, the effects of the inclusion aspect ratio « and
stiffness ratio u‘V/u® on the initial yield stresses under the three different loading modes,
(£,)4s () and (£,),, on the concomitant yield surfaces, and on the overall stress—strain
relations.

We begin with Figs 2, showing the dependence of (3,)q, (£,), and (£,), on « and " /u?,
as determined by relations (42). More specifically, Figs 2(a—c) give respectively, plots of
(the reciprocals of ) (£,)4, (£,), and (,),, normalized by 7{", as functions of a (on a
logarithmic scale), for four different values of u"/u® (=0, 0.06, 0.2 and 0.5) and a fixed
value of ¢? (=0.2). Thus, Fig. 2(a) shows that, for fixed finite ¢'?, the axisymmetric yield
stress (%,)q of composites with prolate (oblate) inclusions increases monotonically with
increasing (decreasing) aspect ratios. The extreme limits of the aspect ratio (x = 0 and o0),
corresponding (as expected on physical grounds) to the cases of continuous reinforcement
(laminates and fiber-reinforced composites, respectively) yield the largest values of (7y)q4. It
is further observed that this reinforcing effect becomes significantly more marked with
increasing inclusion stiffness (decreasing u("/u‘?), with prolate spheroids being somewhat
more efficient in increasing the overall axisymmetric yield stress than oblate spheroids. In
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contrast, it is also seen that nearly spherical particles have a relatively small effect on the
overall axisymmetric yield stress of composites. In fact, as a function of «, the minimum
strengthening effect for this loading mode takes place for a near 0.65. Figure 2(b) shows
corresponding results for the overall transverse yield stress (f,),,. It is observed that in this case
oblate inclusions are most efficient in increasing the transverse yield stress of the composite,
whereas prolate inclusions are least efficient. These results are in agreement with our physical
intuition, since the transverse shear behavior of the extreme cases of laminates and fiber-
reinforced composites is expected to be controlled by the stiffer and weaker phases, respec-
tively. For this mode (transverse shear), increasing inclusion stiffness (decreasing u‘"/u(?)
also has the effect of increasing the overall yield stress level, but this magnifying effect is
only significant for oblate spheroids. On the other hand, Fig. 2(c) shows that the effect of both
prolate and oblate inclusions is to reduce the longitudinal yield stress (), of the composite.

09 :/W
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Fig. 2. The:effect of inclusion shape « and stiffness ratio u("/u‘? on the single-mode effective yield

stresses of metal-matrix composites reinforced by aligned, spheroidal, linear-elastic inclusions in

fixed proportion ¢?. (a) Plot of (£,), (axisymmetric yield stress) versus . (b) Plot of (%,), (transverse

yield stress) versus a. (c) Plot of (£,), (longitu(cli)ineg) yield stress) versus «. (d) Plot of (7,), versus
whlu?.
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Fig. 2 (continued).

(These results can also be checked against our physical intuition by considering the extreme
cases of laminates and fiber-reinforced composites.) In fact, slightly prolate inclusions with
o near 1.4 result in the largest overall longitudinal yield stresses. In this case, increasing
inclusion stiffness (decreasing u'"/u‘®) does not have a significant effect in increasing the
yield stress of the composite. We also note that the values of (£,), and (£,), in the limit as
o — oo are identical, so that incompressible fiber-reinforced composites have identical yield
stress values in the transverse and longitudinal shear modes. Finally, Fig. 2(d) shows plots
of (the reciprocals of ) ()4, normalized by ", versus the stiffness ratio u"/u'?, for several
values of «. These plots confirm our previous observations that increasing particle stiffness
has the effect of increasing the axisymmetric yield stress of the composite, and that this
effect is “‘synergistic” with the reinforcing effect produced by the selection of the limiting
values of the aspect ratios for the inclusions. Thus, the combined effect of these two
reinforcing mechanisms may lead to extremely high theoretical predictions for (%),.
However, these predictions will not be realized in practice due to the presence of imper-
fections in the composite leading to localized, and eventually macroscopic, failure. Similar
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plots may be obtained for the other two modes (7,), and (f,),, except that the relative
trends for curves with the same values of a [as in Fig. 2(d)] will be different for these two
modes.

Figures 3 show plots of different cross-sections of the effective yield surfaces of the
particle-reinforced composites, for fixed values of ¢?(=0.2) and u"/u® (=0.2), and
several values of a (=0.01, 0.1, 1, 10 and 50). Figure 3(a) shows yield surfaces under
combinations of 7, and 7. It is observed that these surfaces are smooth, and that the
spheroidal particles provide between 10 and 75% additional reinforcement over the matrix
yield stress level, for this class of composites. It is also clear that spherical particles provide
the least amount of reinforcement for this combination of modes (except for a small sector
near the pure transverse loading mode, where prolate spheroids lead to slightly smaller
reinforcement). On the other hand, it appears that oblate spheroids provide greatest overall
reinforcement (except near the pure axisymmetric mode, where prolate spheroids lead to

| I | 1
0 02 04 06 08 10 12 14 16 18 20

(a) -1-.' /.,.;1)

10

| S T P | L1 1 1
0 02 04 06 03 10 12 14 16 LS 20

®) 7

Flg 3. Effective yield surfaces of the metal-matrix composites reinforced by algined inclusions with

stiffness ratio u!V/u'" = 0.2, concentration ¢® = 0.2, and varying aspect ratios. (a) Combined

axisymmetric shear 7, and transverse shear 7. (b) Combined transverse shear ¥, and longitudinal
shear £,,.

SAS 30:23-8
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even greater reinforcement). Figure 3(b) shows the corresponding cross-sections of the yield
surfaces under combined 7, and 7,. Once again, it appears that for this loading combination
oblate spheroids provide greatest overall reinforcement (except for nearly pure longitudinal
stresses, for which oblate spheroids do worst and hardly improve on the matrix value). On
the other hand, prolate shapes do worse than spherical shapes, which provide only about
10% isotropic reinforcement. The corresponding figure for combined 7, — 7, loading is not
shown, but the results demonstrate that prolate spheroids are generally best for this type
of combined loading.

Figure 4 shows plots of the stress—strain relations, appropriately normalized, for the
three pure loading modes, with a fixed value of ¢!?(=0.2), two values of u"/u® (=0 and
0.2), two values of n (=3 and 10) and several values of « (=0.01, 0.1, 1, 10 and 50). Figure
4(a) shows plots of 7, versus 74, with uP/u® = 0.2 and n = 3, for the given values of «.
The behavior of the matrix is also shown for comparison. It is observed that the overall
stress—strain curves have the same general features as the matrix material, except that the
load-carrying capacity of the composite is significantly increased, especially for the extreme
values of «. It appears, however, that prolate inclusions lead to the greatest overall load-
carrying capacity (several times higher than spherical inclusions, for example). Figure 4(b)
shows the same set of plots for T4 versus g, for the same value of u'"/u‘?, but a different
value of n (=10). The general trends are similar to those of Figure 4(a), but the softening
effect of the more ductile matrix phase is now more marked. Figure 4(c) gives results for
the same set of parameters as Figure 4(b), except that the value of x‘"/u® has been changed
from 0.2 to 0 (corresponding to rigid inclusions). It is observed that the initial yielding of
the composite occurs at much higher stresses, in agreement with our discussion of Figs 2(a)
and (d), but the post-yielding behavior of the curves in Fig. 4(c) is very similar to those in
Fig. 4(b), indicating that particle stiffness does have a significant effect on the post-yielding
behavior of the composite (for strains greater than about five times the yield level). Figures
5(a, b) show plots of T, versus 7, for u/u® = 0.2 and for n = 3 and 10, respectively. It is
observed that the plots are similar in character to the corresponding plots in Figs 4(a, b)
for the same sets of parameters. However, for this loading mode, it appears that oblate
inclusions are by far most effective in increasing the load-carrying capacity of the composite.
In fact, prolate inclusions result in slightly lower stress—strain relations than spherical
inclusions. Although the results are not shown, corresponding plots for rigid inclusions
demonstrate that the stiffness of the particle only has a significant effect near the yield point
of the composite, but this effect quickly disappears as the plastic deformation progresses.
Finally, Figs 6(a,b) show plots of 7, versus 7,, for the usual values of the material
parameters. The main observation relating to these plots is that particle shape does not
seem to affect very significantly the load-carrying capacity of the composite in this loading
mode. In fact, both oblate and prolate shapes tend to diminish the load-carrying capacity
of the composite, when compared with nearly spherical inclusions.

6. CONCLUDING REMARKS

This study has dealt with the effects of particle shape and stiffness on the effective
constitutive behavior of metal-matrix composites reinforced by stiff spheroidal inclusions
with linear-elastic properties. Many other relevant effects, including those arising from
residual stresses, cavitation and interfacial cracks (between the inclusion and matrix phases),
have therefore been neglected in the interest of simplicity. Although several papers have
appeared recently (as discussed in the Introduction) dealing with numerical analysis of the
response of this class of materials to axisymmetric loading conditions, the present work
appears to be among the first [see also Talbot and Willis (1992) and Zhao and Weng (1990)]
to deal with general loading conditions, including transverse and longitudinal shear loading.
It is found that the effects of particle shape and stiffness depend strongly on the loading
mode. Thus, prolate shapes lead to the largest increases in the yield stress and load-carrying
capacity of this class of composites when subjected to axisymmetric loading ; oblate shapes
lead to large increments in the yield stress and load-carrying capacity of the composites for
both the transverse shear and axisymmetric shear modes; and nearly spherical shapes
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Fig. 4. Axisymmetric effective stress—strain relations (Z, versus 7,) for the particle-reinforced, metal-

matrix composite, with inclusion concentration ¢® = 0.2, and several values of the aspect ratio a.

The stiffness ratio is u"/u® = 0.2 for (a) and (b), and 0 for (c). The matrix hardening exponent is
@n=3,(b)n=10,()n=10.
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Fig. 5. Transverse effective stress—strain relations (7, versus 7,) for the particle-reinforced, metal-
matrix composite, with inclusion concentration ¢'? = 0.2, stiffness ratio u’/u‘» = 0.2, and several
values of the aspect ratio «. The matrix hardening exponent is (a) n = 3, (b) n = 10.

provide the optimal amount of reinforcement for the longitudinal mode, although this
reinforcement is actually quite modest in size. The large reinforcing effects of the prolate
and oblate shapes for the axisymmetric and transverse modes, respectively, can be best
understood by recognizing that, at finite concentrations of inclusions, the limiting values of
the aspect ratio correspond to continuous reinforcement (laminates and fiber-reinforced
composites, respectively). Very different results would be obtained if the extreme limits of
aspect ratio were considered with fixed inclusion density, instead of fixed inclusion volume
fraction [see Talbot and Willis (1992) and Li et al. (1993)]. In addition, it is found that
increasing particle stiffness leads to concomitant increases in the load-carrying capacity of
the composite, with larger, synergistic, increases for the particle shapes with extreme values
of the aspect ratio. These results are expected to be of significance in the design of optimal
microstructures for particle-reinforced, metal-matrix composites. Finally, it should be men-
tioned that a limitation of the present results, which prevented a quantitative comparison
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Fig. 6. Longitudinal effective stress—strain relations (Z, versus 7,) for the particle-reinforced, metal-
matrix composite, with inclusion concentration ¢ = 0.2, stiffness ratio u/u® = 0.2, and several
values of the aspect ratio «. The matrix hardening exponent is (a) n = 3, (b) n = 10.

with the numerical results available for periodic composites, is that the phases of the
composites were assumed to be incompressible. However, this limitation can be eliminated
at the cost of complicating the analyses ; this is presently being pursued.
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APPENDIX

For a spheroidal inclusion, aligned with the x, axis, the components of the Eshelby’s tensor are (Eshelby,

1957)
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where vV is the Poisson’s ratio of the matrix material, x = b/a is the aspect ratio of the spheroidal inclusion (see
Fig.1), and f'and g are given respectively by

f@= lay(a)— 1] (A2)

and

g(a) = (—az_aw[a(az—l)‘“—cosh" a], a>1, prolate,

——zlcos™ a—a(1—a?)"?], a<1, oblate. (A3)
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